

ПРИБОР ДЛЯ ОПЕРАТИВНОГО КОНТРОЛЯ МИКРОСТРУКТУРЫ И ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ МЕТАЛЛА ДЕТАЛЕЙ И КОНСТРУКЦИЙ

ТИП ПРЕДЛАГАЕМОЙ ПРОДУКЦИИ/УСЛУГИ

Экспериментальный образец.

ОБЛАСТЬ ЗНАНИЙ

55.01.81	Измерения, испытания, контроль и управление качеством
53.49.19	Методики исследований металлов и сплавов и лабораторное оборудование
81.09.81	Испытание материалов. Дефектоскопия

ОБЛАСТИ ПРИМЕНЕНИЯ

Машиностроение:

Оперативный безобразцовый контроль микроструктуры и механических свойств основного металла, сварных соединений, зон концентрации напряжений, покрытий непосредственно в изделиях в процессе их изготовления, эксплуатации и ремонта.

ПРИМЕРЫ ПРИМЕНЕНИЯ

Применение прибора для оценки микроструктуры и механических свойств металла включает анализ микроструктуры с помощью встроенной видеокамеры и разработанной программы "Microstructure" и вдавливание индентора в поверхность металла, после чего рассчитанные значения характеристик механических свойств высвечиваются на дисплее прибора.

Прибор имеет возможность синхронизации с ПК. В случае необходимости, с помощью встроенной в прибор видеокамеры можно получить изображение отпечатка, экспортировать его в программу "Microstructure" (рис. 1), входящую в комплектацию прибора, и произвести расчет механических свойств металла по диаметру отпечатка. Результат можно вывести в виде отчета в формате *.csv (рис. 2).

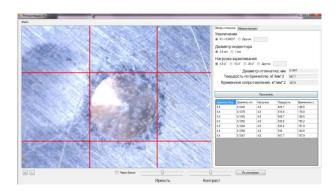


Рис. 1. Измерение диаметра отпечатка и расчет характеристик механических свойств в программе «Microstructure»

"Wild OSti detaile"													
4	Α	В	С	D	Е	F	G	Н	1	J	K	L	
1	Report No. 7-1												
2	Test No.	1	2	3	4	5	6	7	8	9	10	Average	
3	Indenter diameter, mm	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4		
4	Indent diameter, mm	0,138	0,1356	0,1382	0,1354	0,1376	0,136	0,1415	0,1399	0,1378	0,1343		
5	Load, kG	4,8	4,8	4,8	4,8	4,8	4,8	4,8	4,8	4,8	4,8		
6	Hardness, kG/mm2	311	322,5	310,2	323,4	312,7	320,7	295,3	302,6	311,9	329	313,9	
7	Ultimate stress, kG/mm2	106,5	110,4	106,2	110,7	107,1	109,8	101,1	103,6	106,8	112,6	107,5	
8													

Программа "Microstructure" дает возможность проводить анализ микроструктуры металла (рис. 3). Для углеродистых и легированных сталей перлитного класса доступна возможность количественной оценки объёмных долей феррита и перлита в структуре. Также есть возможность определения размеров отдельных элементов микроструктуры (зерно, включение и др.).

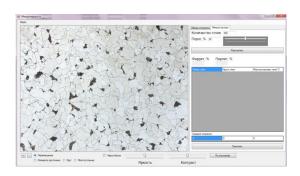


Рис. 3. Анализ микроструктуры стали в программе «Microstructure»

КРАТКОЕ ОПИСАНИЕ

- Экспериментальный образец прибора для оперативного контроля микроструктуры и механических свойств металла позволяет проводить определение твердости и других механических свойств металла прямым способом по кинетическим диаграммам вдавливания индентора с последующим преобразованием этих диаграмм в диаграммы растяжения в области равномерной деформации. Контроль микроструктуры осуществляется с помощью портативного микроскопа с видеокамерой, встроенного в прибор.
- Внедрение прибора на производстве или в лабораторных условиях позволит повысить качество оперативного контроля фактического структурно-механического состояния металла оборудования и трубопроводов в процессе их эксплуатации в таких отраслях промышленности, как энергетика, нефтегазохимия, транспорт и др. С помощью прибора можно своевременно выявлять критическое состояния металла в потенциально опасных местах деталей и конструкций, предотвращать аварийные ситуации и, как следствие, повысить надежность эксплуатации промышленного оборудования.

ПРЕИМУЩЕСТВА

В отличие от портативных твердомеров динамического действия, основанных на измерении скорости движения индентора, а также от портативных твердомеров физико-механического действия, результаты определения твердости и других механических свойств металлов, полученные с помощью настоящего прибора, не будут зависеть от их марки, структурномеханического состояния, а также от массы и жесткости контролируемых изделий и их ориентации в пространстве.

На сегодняшний день на рынке не представлено портативных твердомеров, обеспечивающих возможность определения характеристик прочности (временное сопротивление, предел текучести) металла и выполнить анализ его микроструктуры непосредственно в изделии, включая сварные соединения, зоны концентрации напряжений (в том числе и структурные).

ПРАВОВАЯ ЗАЩИТА

Патент РФ на изобретение № 2451282. «Способ определения механических характеристик материалов».

КОНТАКТЫ

Разработчик: Матюнин Вячеслав Михайлович,

Институт энергомашиностроения и механики, кафедра Технологии металлов